Sign In

Communications of the ACM

Communications of the ACM

Algorithms: Algorithm 338: algol procedures for the fast Fourier transform

The following procedures are based on the Cooley-Tukey algorithm [1] for computing the finite Fourier transform of a complex data vector; the dimension of the data vector is assumed here to be a power of two. Procedure COMPLEXTRANSFORM computes either the complex Fourier transform or its inverse. Procedure REALTRANSFORM computes either the Fourier coefficients of a sequence of real data points or evaluates a Fourier series with given cosine and sine coefficients. The number of arithmetic operations for either procedure is proportional to n log2 n, where n is the number of data points.

The full text of this article is premium content


No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.
Sign In for Full Access
» Forgot Password? » Create an ACM Web Account