Sign In

Communications of the ACM

Communications of the ACM

Multiprocessor memory organization and memory interference

ture of shared memory in a multiprocessor computer system is examined with particular attention to noninterleaved memory. Alternative memory organizations are compared and it is shown that a home memory organization, in which each processor is associated with one or more memories in which its address space is concentrated, is quite effective in reducing memory interference. Home memory organization is shown to be particularly suited to certain specialized computational problems as well as to possess advantages in terms of interference and reliability for general purpose computation. Results for interleaved memory are drawn from previous work and are used for comparison. Trace-driven simulations are used to verify the conclusions of the analysis.

The full text of this article is premium content


No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.
Sign In for Full Access
» Forgot Password? » Create an ACM Web Account