acm-header
Sign In

Communications of the ACM

Research highlights

Magellan: Toward Building Ecosystems of Entity Matching Solutions


Magellan's ship Victoria, illustration

Entity matching (EM) finds data instances that refer to the same real-world entity. In 2015, we started the Magellan project at UW-Madison, jointly with industrial partners, to build EM systems. Most current EM systems are stand-alone monoliths. In contrast, Magellan borrows ideas from the field of data science (DS), to build a new kind of EM systems, which is ecosystems of interoperable tools for multiple execution environments, such as on-premise, cloud, and mobile. This paper describes Magellan, focusing on the system aspects. We argue why EM can be viewed as a special class of DS problems and thus can benefit from system building ideas in DS. We discuss how these ideas have been adapted to build PyMatcher and CloudMatcher, sophisticated on-premise tools for power users and self-service cloud tools for lay users. These tools exploit techniques from the fields of machine learning, big data scaling, efficient user interaction, databases, and cloud systems. They have been successfully used in 13 companies and domain science groups, have been pushed into production for many customers, and are being commercialized. We discuss the lessons learned and explore applying the Magellan template to other tasks in data exploration, cleaning, and integration.

Back to Top

1. Introduction

Entity matching (EM) finds data instances that refer to the same real-world entity, such as tuples (David Smith, UW-Madison) and (D. Smith, UWM). This problem, also known as entity resolution, record linkage, deduplication, data matching, et cetera, has been a long-standing challenge in the database, AI, KDD, and Web communities.2,6

As data-driven applications proliferate, EM will become even more important. For example, to analyze raw data for insights, we often integrate multiple raw data sets into a single unified one, before performing the analysis, and such integration often requires EM. To build a knowledge graph, we often start with a small graph and then expand it with new data sets, and such expansion requires EM. When managing a data lake, we often use EM to establish semantic linkages among the disparate data sets in the lake.


 

No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
  

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.
Sign In for Full Access
» Forgot Password? » Create an ACM Web Account