Sign In

Communications of the ACM

Research highlights

Technical Perspective: Robust Statistics Tackle New Problems

The following paper represents the beginning of a long and productive line of work on robust statistics in high dimensions. While robust statistics has long been studied, going back at least to Tukey,6 the recent revival centers on algorithmic questions that were largely unaddressed by the earlier statistical work.

Robust statistics centers on the question of how to extract information from data that may have been corrupted in some way. The most common form of robustness, also considered here, is robust to outliers: some fraction of the data has been removed and replaced with arbitrary, erroneous points. A familiar instance of robust statistics is using the median instead of the mean, since the median is less sensitive to extreme points, while in contrast a single overly large value could completely skew the mean.


No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.