Sign In

Communications of the ACM


Deceiving AI

bull superimposed on image of tank, illustration

Credit: Andrij Borys Associates, Shutterstock

Over the last decade, deep learning systems have shown an astonishing ability to classify images, translate languages, and perform other tasks that once seemed uniquely human. However, these systems work opaquely and sometimes make elementary mistakes, and this fragility could be intentionally exploited to threaten security or safety.

In 2018, for example, a group of undergraduates at the Massachusetts Institute of Technology (MIT) three-dimensionally (3D) printed a toy turtle that Google's Cloud Vision system consistently classified as a rifle, even when viewed from various directions. Other researchers have tweaked an ordinary-sounding speech segment to direct a smart speaker to a malicious website. These misclassifications sound amusing, but they could also represent a serious vulnerability as machine learning is widely deployed in medical, legal, and financial systems.


No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.