Sign In

Communications of the ACM

Research highlights

Technical Perspective: Neural Radiance Fields Explode on the Scene

neural radiance field scene representation

Imagine you could capture a 3D scene and later revisit that scene from different viewpoints, perhaps seeing the action as it unfolded at capture time. We are accustomed to snapping 2D photographs or videos, which are then compactly stored on our phones or in the cloud. In contrast, the corresponding process for 3D capture is quite cumbersome. Traditionally, it involves taking lots of images of the scene, applying photogrammetry techniques to reconstruct a dense surface reconstruction, and then cleaning up manually. However, the results can be spectacular and have been used to convey a sense of place not otherwise possible with 2D photography, for example, in recent interactive features from the New York Times.

Recently, many researchers have investigated whether the revolution in deep neural networks can put these same capabilities within reach of everyone and make it as easy as snapping a 2D picture. One technique in particular—neural volume rendering—exploded onto the scene in 2020, triggered by the following impressive paper on Neural Radiance Fields, or NeRF. This novel method takes multiple images as input and produces a compact representation of the 3D scene in the form of a deep, fully connected neural network, the weights of which can be stored in a file not much bigger than a typical compressed image. This representation can then be used to render arbitrary views of the scene with surprising accuracy and detail.


No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.
Sign In for Full Access
» Forgot Password? » Create an ACM Web Account