Sign In

Communications of the ACM

Research highlights

Technical Perspective: Traffic Classification in the Era of Deep Learning

jumble of colored lines, illustration

Credit: Getty Images

Network traffic classification is a fundamental problem in networking. Given observations of network traffic, the goal is to infer properties of interest, such as what application generated the traffic. This enables network operators to monitor and optimize performance, detect anomalies or malware, block unwanted traffic, inform capacity planning, and so on.

The problem has been extensively studied for more than 20 years, using a combination of heuristics, based on domain expertise, and automated methodologies. Some techniques rely on hard-coded rules, such as the use of well-known ports or servers. For example, a DNS request, the HTTP Host field, or the SNI field in TLS, may all reveal the name of the server contacted (for example,, which may in turn be indicative of the service itself. Other techniques rely on behavioral characteristics, such as flow statistics, communication patterns, or traffic volume time series. For example, voice-over-IP applications generate small, evenly spaced packets; Web applications produce bursty traffic; and smart home devices exchange occasional status updates and commands with the cloud.


No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.
Sign In for Full Access
» Forgot Password? » Create an ACM Web Account