Sign In

Communications of the ACM


Quantum Leap

classic bit and qubit, illustration

Credit: University of Strathclyde, Andrij Borys Associates

Hopes for quantum computing have long been buoyed by the existence of algorithms that would solve some particularly challenging problems with exponentially fewer operations than any known algorithm for conventional computers. Many experts believe, but have been unable to prove, that these problems will resist even the cleverest non-quantum algorithms.

Recently, researchers have shown the strongest evidence yet that even if conventional computers were made much more powerful, they probably still could not efficiently solve some problems that a quantum computer could.


No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.
Sign In for Full Access
» Forgot Password? » Create an ACM Web Account