Sign In

Communications of the ACM


Bouncing Balls and Quantum Computing

pool balls

Credit: Niraj Kedar

The history of science and mathematics includes many examples of surprising parallels between seemingly unrelated fields. Sometimes these similarities drive both fields forward in profound ways, although often they are just amusing.

In December, Adam Brown, a physicist at Google, described a surprisingly precise relationship between a foundational quantum-computing algorithm and a whimsical method of calculating the irrational number π. "It's just a curiosity at the moment," but "the aspiration might be that if you find new ways to think about things, that people will use that to later make connections that they'd not previously been able to make," Brown said. "It's very useful to have more than one way to think about a given phenomenon."


No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.
Sign In for Full Access
» Forgot Password? » Create an ACM Web Account